Successful implementation of Digital Substation

Nargis Hurzuk, Senior Engineer-Statnett
SGTech- Europe
26th of March 2019, Amsterdam
Content

• Pilot installation- Design
• Testing Experiences
• Operational Experiences
• Further activities in Project
• Further plans- Statnett
Smart, Effective and Secure

Digital Substation - Challenges today's philosophy?

- Safety
- Time
- Cost
- Functionality
Goals for the R&D project

- Develop next generation control systems
- Digital substations including PB, GOOSE, SV and LPIT.
- Build Competance.
- Gain experience and verify maturity of technology
- Interoperability
Pilot installation – compact design

Multivendor
Ring topologi
PRP-REDBOX
VLAN
FAST GOOSE
Priority
PTP
Time Synchronisation

- Importance
- Cooperation with COSEC Time project
IT Security

• Firewall on gateway- only IP traffic from trusted IP and MAC adress on SB and PB.
• RBAC- Role Based Access Control
• Sticky MAC address
• Unused ports are closed by the firewall
• TAP-Terminal Access Point- V Broker 110-NettScout
Testing Experiences

Test and simulation functionalities
 • Logical device approach
 • Different implementation of test and simulation mode.

Planning for GOOSE
 • Test terminals
 • Predefining of the test GOOSE

Workshops!
Testing Experiences (cont......)

Monitoring and fault finding
- Alarms not affecting the grid operation
- Response matrix
- Close cooperation of control system with the network design

Documentation
- Need of documenting logics, function and the flow of GOOSE

Testing and commissioning of the network component
- Communication network as the central part of design
- Firmware upgrade and security patches
Testing with Omicron- DANE0

- System verification
- Fault finding and analysing
- Timesync. and BMCA

Fremtiden er elektrisk
Heat issue
- No effect on the performance
- Affects the lifetime of the components

Continual Comparison of current and Voltage
- MU and SAMU outputs
- MU and Conv. Analog
- SAMU and Conv. Analog
Operation Experiences (cont…….)

• Start of Distance protection

• Transformer fault in the neighbouring station:
• Current L3 and V3 (SAMU, MU og "normal" overlapping):
Operation Experiences (cont.....)

MU internal failure- alarm and the quality bit.

<table>
<thead>
<tr>
<th>Date and time</th>
<th>Device</th>
<th>Category</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-06-03</td>
<td>DANO</td>
<td>(D127G)</td>
<td>Sampled Values</td>
<td>DCG_MU1_SV1: Quality: Questionable, Inaccurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Validity not ‘Good’</td>
<td></td>
</tr>
<tr>
<td>2018-06-03</td>
<td>DANO</td>
<td>(D127G)</td>
<td>Sampled Values</td>
<td>DCG_MU1_SV2: Quality: Questionable, Inaccurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Validity not ‘Good’</td>
<td></td>
</tr>
<tr>
<td>2018-06-03</td>
<td>DANO</td>
<td>(D127G)</td>
<td>Sampled Values</td>
<td>DCG_MU1_SV3: Quality: Questionable, Inaccurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Validity not ‘Good’</td>
<td></td>
</tr>
<tr>
<td>2018-06-03</td>
<td>DANO</td>
<td>(D127G)</td>
<td>Sampled Values</td>
<td>DCG_MU1_SV4: Quality: Questionable, Inaccurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Validity not ‘Good’</td>
<td></td>
</tr>
<tr>
<td>2018-06-03</td>
<td>DANO</td>
<td>(D127G)</td>
<td>Sampled Values</td>
<td>DCG_MU1_SV5: Quality: Questionable, Inaccurate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Validity not ‘Good’</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>Quality bit</th>
<th>Value</th>
<th>TESTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical Power Saturation*</td>
<td>Failure</td>
<td>TRUE</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Sampled Value</td>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td>Optical Power Alarm</td>
<td>Failure</td>
<td>TRUE</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>Sampled Value</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>Optical Power Warning</td>
<td>questionable</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>Inaccurate</td>
<td>TRUE</td>
<td>OK</td>
</tr>
<tr>
<td></td>
<td>Sampled Value</td>
<td>Inaccurate</td>
<td>OK</td>
</tr>
</tbody>
</table>
Operation Experiences (cont....)

Energy meter
- Comparison of values
- Good quality of the measurements
- Accreditation - Primary control in the factory together with the better balance control?

<table>
<thead>
<tr>
<th>Clock</th>
<th>Active energy import (GWh)</th>
<th>Active energy export (GWh)</th>
<th>Last average demand (MW)</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10.0</td>
<td>1-1.2.8.0 (MW)</td>
<td>1-10.5.0 (MW)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-11-07 15:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>74.8</td>
<td>0.0</td>
<td>74.80</td>
<td>0.0</td>
<td>74.80</td>
<td>0.0</td>
<td>74.80</td>
<td>0.0</td>
</tr>
<tr>
<td>2017-11-07 14:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>96.0</td>
<td>0.0</td>
<td>96.00</td>
<td>0.0</td>
<td>95.97</td>
<td>0.0</td>
<td>96.03</td>
<td>-0.03</td>
</tr>
<tr>
<td>2017-11-07 15:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>95.7</td>
<td>0.0</td>
<td>95.70</td>
<td>0.0</td>
<td>95.70</td>
<td>0.0</td>
<td>95.92</td>
<td>-0.23</td>
</tr>
<tr>
<td>2017-11-07 16:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>90.1</td>
<td>0.0</td>
<td>90.10</td>
<td>0.0</td>
<td>90.10</td>
<td>0.0</td>
<td>90.20</td>
<td>-0.10</td>
</tr>
<tr>
<td>2017-11-07 17:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>86.7</td>
<td>0.0</td>
<td>86.70</td>
<td>0.0</td>
<td>86.70</td>
<td>0.0</td>
<td>86.85</td>
<td>-0.15</td>
</tr>
<tr>
<td>2017-11-07 18:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>41.9</td>
<td>0.0</td>
<td>41.90</td>
<td>0.0</td>
<td>42.07</td>
<td>0.0</td>
<td>42.07</td>
<td>-0.13</td>
</tr>
<tr>
<td>2017-11-07 19:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>41.9</td>
<td>0.0</td>
<td>42.07</td>
<td>0.0</td>
<td>42.07</td>
<td>0.0</td>
<td>42.05</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-07 20:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>34.1</td>
<td>0.0</td>
<td>34.10</td>
<td>0.0</td>
<td>34.10</td>
<td>0.0</td>
<td>34.19</td>
<td>-0.09</td>
</tr>
<tr>
<td>2017-11-07 21:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>16.7</td>
<td>0.0</td>
<td>16.70</td>
<td>0.0</td>
<td>16.70</td>
<td>0.0</td>
<td>16.90</td>
<td>-0.25</td>
</tr>
<tr>
<td>2017-11-07 22:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>2.2</td>
<td>0.0</td>
<td>2.20</td>
<td>0.0</td>
<td>2.20</td>
<td>0.0</td>
<td>2.20</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-07 23:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>-5.6</td>
<td>0.0</td>
<td>-5.60</td>
<td>0.0</td>
<td>-5.60</td>
<td>0.0</td>
<td>-5.60</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-08 00:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>-3.7</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-08 01:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>-3.7</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-08 02:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>-3.7</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-08 03:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>-3.7</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.0</td>
<td>-3.70</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-08 04:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>7.2</td>
<td>0.0</td>
<td>7.20</td>
<td>0.0</td>
<td>7.20</td>
<td>0.0</td>
<td>7.20</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-08 05:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>37.9</td>
<td>0.0</td>
<td>37.90</td>
<td>0.0</td>
<td>37.90</td>
<td>0.0</td>
<td>37.90</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-08 06:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>37.9</td>
<td>0.0</td>
<td>37.90</td>
<td>0.0</td>
<td>37.90</td>
<td>0.0</td>
<td>37.90</td>
<td>0.00</td>
</tr>
<tr>
<td>2017-11-08 07:00:00</td>
<td>94425.3</td>
<td>84310.0</td>
<td></td>
<td>2.2</td>
<td>0.0</td>
<td>2.20</td>
<td>0.0</td>
<td>2.20</td>
<td>0.0</td>
<td>2.20</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Fremtiden er elektrisk
Co-operation with Synaptec

Efficient busbar protection & asset monitoring

Objectives
1. Test the busbar protection scheme with more number of SV streams.
2. Verify interoperability
3. Confirm no temperature effects
4. Automate asset monitoring in 1 system

Methodology
1. Install shadow protection scheme
2. Compare results
3. Monitor 21 electrical & mechanical sensors simultaneously in one system
4. Analyse the results by implementing them in the digital twin for transformer

Fremtiden er elektrisk
Design of bay cabinet - Challenges

- EMP protection
- Climatic condition
- Optimal Maintenance
- Cyber security

Cyber Security and Network
Statnett digitalisations plan

One green field substation in Oslo area for 420KV GIS and one brownfield refurbishment AIS substation…timeline 2021-22
Specification Phase

- Co-operation with other TSO
- Co-operation with DSO
- Co-operation with vendors
- Co-operation with Universities and research institute
- Architecture: protocols, level of redundancy, control functionality

- Qualification of LPIT together with MU
- Qualification of protection and Control IEDs
Publications

Publication 2018
• DPSP- Testing
• PAC World- Operational experience
• Cigre- Experience med multivendor digital stasjon

Publications planned for 2019
• Busbar protection scheme with sensor data- PAC world- Synaptec
• Time synchronisation- Cigre B5 Colloquium-Norway
Digitalisation progressing in full speed!

Cooperation!